Welcome to wandb-callbacks’s documentation!¶
tensorflow.py¶
- class wandb_callbacks.tensorflow.ActivationCallback(validation_data, layer_name, log_frequency=5)[source]¶
ActivationCallback.
- on_epoch_end(epoch, logs={})[source]¶
on_epoch_end. Called at the end of an epoch.
- Parameters
epoch – Integer, index of epoch.
logs – Dict, metric results for this training epoch, and for the validation epoch if validation is performed. Validation result keys are prefixed with val_. For training epoch, the values of the Model’s metrics are returned. Example : {‘loss’: 0.2, ‘acc’: 0.7}.
- class wandb_callbacks.tensorflow.DeadReluCallback(x_train, log_frequency=1, dead_threshold=0.8, verbose=False)[source]¶
DeadReluCallback.
Reports the number of dead ReLUs after each training epoch. ReLU is considered to be dead if it did not fire once for entire training set.
- get_relu_activations()[source]¶
get_relu_activations. Retreives all RELU activations of the current model.
- static is_relu_layer(layer)[source]¶
is_relu_layer. Checks if a certain layer contains a RELU activation.
- Parameters
layer – layer object to check.
- on_epoch_end(epoch, logs={})[source]¶
on_epoch_end. Called at the end of an epoch.
- Parameters
epoch – Integer, index of epoch.
logs – Dict, metric results for this training epoch, and for the validation epoch if validation is performed. Validation result keys are prefixed with val_. For training epoch, the values of the Model’s metrics are returned. Example : {‘loss’: 0.2, ‘acc’: 0.7}.
- class wandb_callbacks.tensorflow.GRADCamCallback(validation_data, layer_name, log_frequency=10)[source]¶
GRADCamCallback.
- on_epoch_end(epoch, logs={})[source]¶
on_epoch_end. Called at the end of an epoch.
- Parameters
epoch – Integer, index of epoch.
logs – Dict, metric results for this training epoch, and for the validation epoch if validation is performed. Validation result keys are prefixed with val_. For training epoch, the values of the Model’s metrics are returned. Example : {‘loss’: 0.2, ‘acc’: 0.7}.
utils.py¶
- wandb_callbacks.utils.get_samples_for_activation(class_names, X_val, Y_val)[source]¶
get_samples_for_activation. Returns sample images from the given data. Sample images contain one image per class in the dataset.
- Parameters
class_names – class names of the dataset.
X_val – features of the dataset.
Y_val – labels of the dataset.